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Abstract

The phonon thermal conductivity of MOF-5, a metal-organic framework crystal with a phenylene bridge, is predicted between tem-
peratures of 200 K and 400 K using molecular dynamics simulations and the Green–Kubo method. The simulations are performed using
interatomic potentials obtained using ab initio calculations and experimental results. The predicted thermal conductivity of MOF-5 is low
for a crystal, 0.31 W/m K at a temperature of 300 K, and its temperature dependence is very weak. By decomposing the thermal con-
ductivity into components associated with short- and long-range acoustic phonons, and optical phonons, the weak temperature depen-
dence is found to be related to the mean free path of the majority of phonons, which is of the order of lattice parameter (and is essentially
temperature independent). To interpret the results, an analytical thermal conductivity relation is derived, which reduces to the Cahill–
Pohl and Slack models under appropriate assumptions. The relation contains a critical frequency, which determines the relative contri-
butions of the short- and long-range acoustic phonons. The small long-range acoustic phonon contribution is found to be related to the
long and flexible phenylene bridge, and to the mass mismatch between the cages and the bridges.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The metal-organic frameworks (MOFs), a sub-family of
the nanoporous crystals, are characterized by metal-oxygen
cages (vertices) connected by organic bridges [1–4]. MOFs
currently attract intensive interest for their excellent poten-
tial for storing and separating gases (e.g., N2, Ar, CO2,
CH4, and H2) [5–7]. By changing the organic bridge and/
or its functionalization, new MOFs can be designed and
synthesized without changing the underlying topology.
Recent work has focused on their structural properties
[2], adsorption characteristics [2,5–7], and the diffusion of
light gases through them [8], but their thermal transport
characteristics have yet to be considered. Since the gas
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absorption/desorption is sensitive to the unintended
change in the ambient temperature and this response is
related to the absorption/desorption bed thermal conduc-
tivity, the knowledge of the thermal conductivity of a
MOF is crucial in predicting the behavior. Furthermore,
the variety of MOFs available points towards the possibil-
ity of systematically designing materials with specified ther-
mal properties. To prepare for such molecular design, an
understanding of the relationship between a MOF struc-
ture and its thermal conductivity is required.

We report the investigation of the thermal transport in
MOF-5 (shown in Fig. 1), which is the smallest of a series
of MOFs that have a simple cubic crystal structure [2]. It is
built from zinc–oxygen tetrahedra connected by 1,4-ben-
zenedicarboxylate (BDC) bridges. It has a low density
(610 kg/m3), a large free cage volume (79%), and a pore
diameter of 11.2 Å [2].

There are two standard approaches for predicting the
thermal conductivity of a solid, both of which are based

mailto:kaviany@umich.edu


Nomenclature

a mean atomic distance
b constant
c concentration
k thermal conductivity
n number density
P pressure
q charge
r distance
t time
u velocity
A coefficient
B coefficient
D density of states
E energy
I spectral density
M dipole moments
M atomic weight
N number of particles
Nc number of atoms in a primitive cell
Rc cut-off radius
T temperature
V volume

Greek symbols

b Wolf method parameter
cG Grüneisen constant

js compressibility
k mean free path
m Poisson ratio
x angular frequency
_x heat current
q density
s time constant
u potential energy

Subscripts
A acoustic
CP Cahill–Pohl
i summation index, particle label
j summation index, particle label
p phonon
g group
c cell
O optical
T transversal
L longitudinal
D Debye
sh short-range
lg long-range
j wave vector
b species
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on the Fourier law. One approach is to use continuum
transport theory and kinetic theory, such as the Boltzmann
transport equation (BTE) approach of Callaway [9] and
Holland [10]. The second is to use an atomistic technique,
such as molecular dynamics (MD) simulations. The BTE
can be used to study large systems rather quickly, but for
a reliable calculation, a good understanding of the underly-
ing phonon processes is required. Parameters such as the
phonon relaxation times must be obtained from other
approaches (e.g., by fitting to experimental data [9,10] or
directly from MD [11]). Molecular dynamics is a more fun-
damental method, which tracks the positions and momenta
of an ensemble of classically interacting atoms. For input,
MD only requires a material structure and suitable inter-
atomic potentials. In this investigation, MD will be used
to predict the thermal conductivity of MOF-5. The data
required for a BTE study is currently unavailable.

We first describe the development of the classical inter-
atomic potentials (force fields) needed to perform MD sim-
ulations of MOFs. Using these potentials, the thermal
conductivity of MOF-5 is predicted between temperatures
of 200 K and 400 K. The thermal conductivity is decom-
posed into components associated with short- and long-
range acoustic phonons and optical phonons. A model is
formulated to explain the observed weak temperature
dependence, and a critical frequency is introduced to sepa-
rate the contributions of the two acoustic components.
Finite size and quantum effects on the thermal conductivity
prediction are also discussed. The relationship between the
MOF-5 structure and its thermal behavior is explored, and
a simplified structural model is proposed.

2. Classical interatomic potentials for MOF-5

To model the dynamics of MOF-5, the development of
potentials for different interactions in MOF-5 is required.
Previous MD studies have focused on the interaction of
gases with the structure, and modeled the crystal as being
rigid [8]. The main challenge in the construction of a poten-
tial set is related to the oxygen atom in the carboxylate
moiety, which has a charge of �0.5. While potentials exist
for Zn–O systems with formal charges [12], parameters are
not available for this reduced charge state. To construct the
potentials, we fit selected algebraic expressions to energy
surfaces obtained from ab initio calculations.

The ab initio calculations are performed with Gaussian
98 [13], which is a software package for electronic structure
calculation. First, to determine the appropriate method/
basis set, the MOF-5 structure is relaxed using common
combinations, e.g., RHF/6-311g (here RHF is the method
and 6-311g is the basis). The resulting structures are then
compared to the experimental data, as shown in Table 1.



Fig. 1. MOF-5 unit cell: 8[Zn4O(BDC)3]. This is the 1 � 1 � 1 system.
The cage is built from four zinc–oxygen tetrahedra (ZnOcO3), which share
the Oc atom (located at the center of the cage). The O–C1–O group forms
a carboxylate moiety, to which a phenylene group is attached. Note the
distinction between the three carbon sites. The carboxylate moieties on
either side of a phenylene ring are perpendicular. Thus, eight cages and 12
bridges are required to form the simple cubic unit cell, which has a lattice
constant of 25.85 Å. The formal charges on the oxygen atoms at the center
of the cage (Oc), the carboxylate-oxygen atoms (O), and the zinc atoms are
�2, �0.5, and +2. The other species are charge neutral.
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Based on a sum of squares error calculation (compared to
the experimental data), B3YLP/6-311g** is found to be
most suitable. The energy surface of MOF-5 is then
scanned using B3YLP/6-311g** by changing bond lengths
and angles. The classical potentials are fitted to this data
using the general utility lattice program (GULP) [14].

The set of interatomic potentials includes two-body
(pair), three-body (angular), and four-body (torsional)
terms, as presented in Table 2. The C2 and C3 atoms are
treated in the same way in the pair and angular potentials
(denoted as C2/3). The C2/3–C2/3–C2/3 bending and
C2/3–C2/3–C2/3–C2/3 torsion potentials are taken from
Chelli et al. [15]. Other than electrostatics, no two-body
Table 1
The structural parameters predicted by different ab initio methods/basis sets a

Method/basis Bond lengths (Å)

Oc–Zn Zn–O O–C1 C1–C2 C2–H

RHF/sto-3g* 1.877 1.865 1.281 1.549 1.085
RHF/6-311g** 1.992 1.962 1.241 1.504 1.080
RHF/6-311+g** 1.996 1.981 1.242 1.506 1.080
RHF/LANL2DZ 2.044 1.973 1.271 1.504 1.077
B3YLP/6-311g** 1.972 1.953 1.262 1.510 1.088

B3YLP/6-311+g** 1.982 1.980 1.265 1.512 1.087
B3YLP/LANL2DZ 2.037 1.988 1.295 1.514 1.091

Experiment 1.936 1.941 1.252 1.498 1.090

B3YLP/6-311g** gives the best agreement with the experimental data based
summation is over the bond lengths and angles listed.
interactions are assumed for the non-bonded pairs of Oc–
O, O–O, and Zn–Zn. These interactions are best captured
with the three- and four-body potentials. The hydrogen
atoms are not directly included in the model. The C3-H
group is taken to be a rigid entity (by adding the hydrogen
mass to the carbon mass), a common treatment for hydro-
gen atoms in MD [16].

The MOF-5 structure is then relaxed under the new
potentials with GULP. The resulting structural parameters
are shown in Fig. 2, where they are compared with the
experimental data [17]. The average difference between
the predicated data and the experimental data are 2%.
The MOF-177, IRMOF-11, and IRMOF-16 structures
have also been successfully relaxed in GULP using these
potentials, indicating their transferability to other MOFs.

To further validate the potential, we compare the MD
predicted infrared (IR) spectrum and that from experimen-
tal NIR-FT (Near InfraRed-Fourier Transform) measure-
ments [17]. The range of the NIR-FT data are from
75 Trad/s to 375 Trad/s (400 cm�1 � 2000 cm�1). The MD
predicted IR spectrum is obtained by taking the Fourier
transform of the electrical flux autocorrelation function [18]:

IðxÞ /
Z 1

0

dMðtÞ
dt
� dMð0Þ

dt

� �
cosðxtÞdt; ð1Þ

where

dMðtÞ
dt

¼
XN

i¼1

qiuiðtÞ: ð2Þ

Here, I(x) is the spectral density, x is angular frequency,
M(t) is the summation of the individual dipole moments
of all the atoms in the system, t is time, N is the number
of atoms in the system, qi is the charge on the ith atom,
and ui(t) is the velocity of ith atom. In Fig. 3, the two IR
spectra are shown and the main band peaks are identified.
There are much more details in the calculated spectrum.
The match of the main peaks in the low frequency region
(<200 Trad/s) is considered good. The deviation becomes
noticeable in the high frequency region (P200 Trad/s).
The average deviation between the main band peaks
nd the experimental data [1]

Angles (�) S2 (10�3)

Oc–Zn–O Zn–O–C1 O–C1–C2 C2–C3–H

113.5 127.6 116.1 108.8 6.23
109.5 133.6 117.2 108.8 1.53
109.5 133.3 117.1 108.8 1.95
108.9 135.3 119.4 109.1 4.81
110.8 131.7 117.8 111.1 0.76

110.8 131.6 117.8 111.0 1.40
110.0 133.6 118.8 110.5 4.92

111.1 132.3 118.1 109.5

on a sum of squares calculation. S2 ¼
P9

i¼1½ðsi � sexpÞ=sexp�2, where the



Table 2
The interatomic potentials for MOF-5

Interaction Potential model Parameters

Pair

Oc–Zn 1
r qOcqZn þ A exp � r

r�

� �
� Cr�6 A = 770.127 eV, ro = 0.357 Å, C = 0.00088 eV Å6

Oc–O 1
r qOcqO

O–Zn 1
r qOcqZn þ A expð� r

r�
Þ � Cr�6 A = 529.7 eV, ro = 0.352 Å, C = 0.0 eV Å6

Zn–Zn 1
r qZnqZn

O–O 1
r qOqO

O–C1 uo{[1 � exp(�a(r � ro))]2 � 1} uo = 4.624 eV, a = 2.337 Å�1, ro = 1.28 Å
C1–C2 uo{[1 � exp(�a(r � ro))]2 � 1} uo = 5.439 eV, a = 1.669 Å�1, ro = 1.482 Å
C2/3–C2/3 uo{[1 � exp(�a(r � ro))]2 � 1} uo = 8.196 eV, a = 1.680 Å�1, ro = 1.388 Å

Angular

C2/3–C2/3–C2/3 1
2 khðcos h� cos h�Þ2 kh = 11.732 eV, ho = 120�

O–C1–O 1
2 khðcos h� cos h�Þ2 kh = 11.0 eV, ho = 120�

C1–C2–C3 1
2 khðcos h� cos h�Þ2 kh = 9.599 eV, ho = 120�

Zn–O–C1 1
2 khðcos h� cos h�Þ2 kh = 11.0 eV, ho = 132.3�

Torsional

C2/3–C2/3–C2/3–C2/3 k/[1 � cos(/ � /o)] k/ = 1.735 eV, /o = 0�
O–C1–C2–C3 k/[1 � cos(/ � /o)] k/ = 1.587 eV, /o = 0�
O–C1–O–Zn k/[1 � cos(/ � /o)] k/ = 1.732 eV, /o = 0�

r, h and / are distance, bond angle and torsion angle. The C2 and C3 atoms are treated in the same way in the pair and angular potentials (denoted as
C2/3). The cutoff radius of electrostatic terms is 10 Å. For all other terms, only bonded interactions are considered.

Fig. 2. The MOF-5 structure produced by optimization with GULP using the new potentials and the experimental data (in parentheses). The lengths are
in (Å) and the angles are in (�).
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predicted by MD and the associated experimental data are
3.5%, which we take to be good agreement [19].
3. Simulation details

3.1. Logistics

All data used for the thermal conductivity predictions
come from simulations run in the NVE (constant mass,
volume, and energy) ensemble. Unless noted, the simula-
tion cell contains eight unit cells in a 2 � 2 � 2 arrange-
ment (2624 atoms). Size effects will be discussed in
Section 3.2. The Verlet leapfrog algorithm is used to inte-
grate the equations of motion with a time step of 0.2 fs.
The Wolf method is applied to model the electrostatic
interactions according to [20]:

qiqj

rij
’

qiqjerfcðbrijÞ
rij

� lim
rij!Rc

qiqjerfcðbrijÞ
rij

� �
; ð3Þ

where rij, b, and Rc are the distance between atoms i and j,
the damping parameter, and the cut-off radius. The Wolf
method can significantly reduce the computation time com-
pared to the traditional Ewald sum. Demontis et al. [21].
suggest taking Rc P 5b and b ’ 2/Rc, where b corresponds
to the largest of the nearest-neighbor distances between
particles of opposite charge. For MOF-5, b ’ 2 Å (see
Fig. 2). Thus, we choose Rc to be 10 Å, and b to be
0.2 Å�1. To find the zero-pressure lattice constant as a



Fig. 3. The IR spectrum calculated from MD and the experimental (NIR-
FT) results. The curves are normalized against the largest peak in each
data set. The correspondence between peaks is established by comparing
the partial density of states of the species calculated from MD (see Fig. 8)
to the results of experiments, [17] and by visual comparison of the two
spectra. The 127/125 peak is related to vibrations of the Oc atom, the
245/262 peak is associated with symmetric stretching of the carboxylate
moiety, the 284/279 peak results from vibrations of the phenylene ring,
and the 306/297 peak is associated with asymmetric stretching of the
carboxylate moiety.
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function temperature, simulations are run in the NPT (con-
stant mass, pressure, and temperature) ensemble, and an
average was taken over 20 ps of data. The Nose–Hoover
thermostat and the Berendsen barostat are used to control
the system temperature and pressure [22].

3.2. Quantum effects

Below the Debye temperature, TD, phonon mode popu-
lations in a quantum system are temperature dependent,
but almost temperature independent in a classical system,
such as MD [11]. By running the current simulations at
temperatures above the Debye temperature, errors that
may result from ignoring quantum effects when comparing
to experimental data will be minimized.

The Debye temperature for a monatomic crystal is
defined as [23]

T D ¼
�hP

kB

up;gð6p2nÞ1=3
; ð4Þ

where �hP is the Planck constant divided by 2p, kB is the
Boltzmann constant, up,g is the sound speed (an average
phonon group velocity) and n is the atomic number density
(N/V). For polyatomic crystals, Slack [24] ignored the opti-
cal branches and introduced a factor 1=N 1=3

c to Eq. (4) (Nc

is the number of atoms in the unit cell). For MOF-5, where
the mass and bond differences are small among most
atoms, the correction to Eq. (4) is expected to be smaller.
Using Eq. (4) as given will thus somewhat overestimate
the Debye temperature and provide a safe estimate of the
temperatures for which the simulations will be comparable
to experimental data.

To find the Debye temperature, a sound speed is
required, which can be obtained from MD simulations
using the following procedure. In the NVE ensemble, the
adiabatic compressibility, js, is given by [25]

js ¼
2

3
P þ nkBT þ

X
i;j

o2u
oriorj

* +
� N

nkBT
hðdPÞ2i

" #�1

; ð5Þ

where P is the pressure, u is the total potential energy, and
dP is the root-mean-square pressure fluctuation, i.e.,
h(dP)2i = h(P � hPi)2 i. At a temperature of 300 K, the adi-
abatic compressibility is found to be 7.09 � 10�10 Pa�1.
With the adiabatic compressibility, the longitudinal sound
velocity up,g,L and transverse sound velocity up,g,T can be
determined from [26,27]

up;g;L ¼
3ð1� 2mÞ

jsq

� 	1=2

ð6Þ

up;g;T ¼
3ð1� 2mÞ

2ð1þ mÞjsq

� 	1=2

; ð7Þ

where q is density and m is the Poisson ratio. For most sol-
ids, m ’ 0.3. An average sound speed, up,A, can be given by
3u�1

p;A ¼ u�1
p;g;L þ 2u�1

p;g;T, which yields up,A = 1184 m/s for
MOF-5 at a temperature of 300 K, a reasonable value.
Using Eq. (4) (replacing up,g with up,A), we have TD ’
102 K. We will consider temperatures between 200 K and
400 K (at 50 K intervals), well above the estimated TD.

3.3. Thermal conductivity prediction

The thermal conductivity, k, is predicted using the
Green–Kubo (GK) method, where, for an isotropic mate-
rial, it is given by [28]

k ¼ 1

kBVT 2

Z 1

0

h _wðtÞ � _wð0Þi
3

; ð8Þ

where _wðtÞ is the heat current vector, and h _wðtÞ � _wð0Þi is
the heat current autocorrelation function (HCACF). A
slow-decaying HCACF indicates that the heat current fluc-
tuations can spread over a long time before vanishing (i.e.,
a long phonon relaxation time). The heat current is given
by

_w ¼ d

dt

XN

i¼1

riEi; ð9Þ

where ri and Ei are the position vector and the total energy
of particle i. The GK method has been used to investigate
the thermal properties of dielectric materials such as dia-
mond [29], silicon [30,31], zeolites [32], and amorphous sil-
icon [33]. This approach is based on fluctuation-dissipation
theory and is an equilibrium method. As we believe MOF-5
to be a good dielectric, the electronic component of the
thermal conductivity is taken as negligible.

Thermal conductivity can also be predicted in MD using
the direct method, which closely resembles an experimental
technique based on an application of the Fourier law [30].
The direct method is a steady-state, non-equilibrium
method in which a steady 1-D heat flux is imposed on a



Table 3
Variation of the predicted thermal conductivity of MOF-5 with respect to
the simulation system size (number of cells and total number of atoms)
and temperature

T (K) Simulation system size

1 � 1 � 1
(328 atoms)

2 � 2 � 2
(2624 atoms)

3 � 3 � 3
(8856 atoms)

k (W/m K)
200 0.187 ± 0.025 (3) 0.287 ± 0.041 (3)
250 0.197 ± 0.013 (3) 0.293 ± 0.027 (3)
300 0.195 ± 0.007 (3) 0.308 ± 0.024 (4) 0.288 ± 0.044 (1)
350 0.205 ± 0.008 (3) 0.316 ± 0.016 (3) 0.291 ± 0.052 (1)
400 0.196 ± 0.008 (3) 0.317 ± 0.018 (3)

The number in the parentheses is the number of simulation runs and
averaged to get the reported value and the uncertainty. The uncertanity
for the 3 � 3 � 3 system are estimated from the fluctuation of the HCACF
in the converged region of the integral.
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system. From the resulting temperature gradient, the ther-
mal conductivity is directly obtained using the Fourier law.
The direct method normally has strong non-linear response
behavior and significant size effects. Large atomic system
are typically required to obtain an accurate prediction of
the bulk phase thermal conductivity (it is better suited, in
fact, to the study of thin films) [30]. For a complex crystal
with a large unit cell (such as MOF-5), the computational
demands would be tremendous. The linear response behav-
ior of the GK method leads to accurate results using smal-
ler atomic system than required in the direct method [30].
The GK method is also advantageous as it allows for the
decomposition of the thermal conductivity into contribu-
tions associated with acoustic and optical phonons [32].

At the beginning of a simulation for a thermal conduc-
tivity prediction, the system is run in the NVT ensemble to
set the temperature. After 20 ps, when the system has
reached equilibrium, the simulation is switched to run in
the NVE ensemble, and the HCACF is obtained over
200 ps. At each temperature, three runs are performed
unless noted. The thermal conductivity is then obtained
from the integral of the HCACF [32]. A running average
is applied to the integral to obtain a smooth behavior,
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Fig. 4. (a) Decay of the normalized HCACF for MOF-5 and (b) its
integral (the thermal conductivity) at a temperature of 300 K.
allowing a convergence region to be defined. The decay
of the normalized HCACF at a temperature of 300 K is
shown in Fig. 4a, and its integral, the thermal conductivity,
is shown in Fig. 4b. The HCACF vanishes after 6 ps. The
MOF-5 HCACF has high frequency oscillations, believed
to be related to optical phonons [32].

3.4. Simulation-size effects

In a small simulation cell, there may not be enough pho-
non modes to establish scattering and transport representa-
tive of the associated bulk system [34]. Such size effects will
lead to a thermal conductivity different from the infinite
size (bulk) limit [29,30]. The MD predicted thermal con-
ductivities of MOF-5 are shown in Table 3, for simulation
systems containing 1 � 1 � 1, 2 � 2 � 2 and 3 � 3 � 3 unit
cells (328, 2624, and 8856 atoms). The thermal conductivity
of the 1 � 1 � 1 system is lower than that of the larger sys-
tems. The predictions for the 2 � 2 � 2 system are very
close to those for the 3 � 3 � 3 system at temperatures of
300 K and 350 K, indicating that the 2 � 2 � 2 system will
suffice to give a converged value.

4. Numerical results and analysis

4.1. Thermal conductivity and temperature dependence

The 2 � 2 � 2 data from Table 3 are plotted in Fig. 5.
Also included in the plot are the thermal conductivity mod-
els of Slack [24] and Cahill and Pohl [35].

Slack proposed that the thermal conductivity of crystals
at temperatures above that of the experimental peak value
can be approximated by the relation [36,24]

kS ¼
3:0� 104hMiT 3

D

Tn1=3c2
GN 2=3

c

; ð10Þ

where hMi is the mean atomic weight of the atoms in the unit
cell (kg/kmol) and cG is the mode-averaged Grüneisen con-
stant. This relation indicates that the thermal conductivity
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Fig. 5. Temperature dependence of the thermal conductivity of MOF-5
predicted by MD. The Slack relation [Eq. (10)], using cG = 0.45 to fit the
predicted thermal conductivity value at T = 300 K and the Cahill–Pohl
relation [Eq. (11)], using the MD predicted sound speeds are also shown.
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will decrease with increasing temperature as T�1 (other fac-
tors such as cG have a weak temperature dependence [36]), a
prediction consistent with experimental data for many crys-
tals [36]. The decrease in the thermal conductivity is a result
of a decrease in the phonon mean-free path due to an in-
crease in inter-phonon scattering, which itself is a result of
the increasing anharmonicity brought about by the higher
temperatures [37,38]. The Slack model is plotted in Fig. 5
by fitting cG to the MD predicted thermal conductivity at
a temperature of 300 K. The resulting value of cG is 0.45,
lower than typical values between unity and two. The fit is
primarily intended to allow for comparison between the
trend of the Slack model and the MD data, and not as a pre-
diction of cG.

Cahill and Pohl [35] developed a model for the thermal
conductivity of amorphous materials by assuming that
energy transfer only occurs between neighboring vibra-
tional entities, so that the mean free path of all phonons
is equal to one half of their wavelength. The thermal con-
ductivity in this model is given by

kCP ¼
p
6

� �1=3

kBn2=3
X3

i¼1

up;g;i
T

T D;i


 �2 Z T D;i=T

0

x3ex

ðex � 1Þ2
dx;

ð11Þ
and has been interpreted as a minimum solid phase thermal
conductivity [24]. It is plotted in Fig. 4. The summation in
the expression for kCP is over the three vibration polariza-
tions. The thermal conductivity predicted by Eq. (11) in-
creases with increasing temperature, as more phonons
modes are excited (a quantum effect, related to the specific
heat). When T� TD, Eq. (11) reaches its classical limit,

kCP;classical ¼
1

2

p
6

� �1=3

kBn2=3
X3

i¼1

up;g;i: ð12Þ
The thermal conductivity of MOF-5 from MD simulation
at a temperature of 300 K is 0.31 ± 0.02 W/m K, a very
low value for a crystal. This value can be compared with
the thermal conductivities of other nanoporous crystals,
such as MD predictions for the zeolites sodalite (3.5 W/
m K), faujasite (2.1 W/m K), and zeolite-A (1.7 W/m K)
[32], and experimental results for Tl9BiTe6 (0.39 W/m K)
[39] and amorphous silica (1.4 W/m K) [40].

The thermal conductivity of MOF-5 according to MD
simulations is almost temperature independent. A power-
law fit (k / Tn) yields a n value of 0.16, different from the
T�1 high temperature dependence predicted by Eq. (10)
and kinetic theory [36]. The behavior is more similar to that
of an amorphous material. This result suggests that in the
temperature range of 200 K to 400 K, the mean free path of
most phonons in MOF-5 has been minimized. The quanti-
tative difference between the MD prediction and the CP
model will be discussed in the next section.

4.2. Thermal conductivity decomposition

A two-stage monotonic decay of the HCACF has been
reported for crystals with a one-atom unit cell [41,42]. In
crystals with larger unit cells, optical phonons have been
found to add high-frequency oscillations to the HCACF
[32]. As such, we can decompose the HCACF of a crystal
with a multi-atom unit cell into three parts [acoustic
short-range (A,sh), acoustic long-range (A,lg), and optical
(O)] as [32]

h _wðtÞ � _wð0Þi
3

¼ AA;sh expð�t=sA;shÞ þ AA;lg expð�t=sA;lgÞ

þ
X

i

BO;i expð�t=sO;iÞ cosðxO;itÞ: ð13Þ

The coefficients A and B represent the strength of a given
mode. The summation in the optical term corresponds to
a sum over the peaks in the frequency spectrum of the
HCACF [32]. Then, from Eq. (8), the thermal conductivity
can be decomposed into three parts as

k ¼ 1

kBVT 2
Ap;shsp;sh þ Ap;lgsp;lg þ

X
i

BO;isO;i

1þ s2
O;ix

2
O;i

 !

	 kp;sh þ kp;lg þ kO: ð14Þ

We first identify the optical phonon parameters by fitting
to the Fourier transform of the HCACF. The resulting
kO values for the three simulation runs are then averaged.
The fit optical component of the HCACF is then sub-
tracted from the raw HCACF. The resultant HCACFs
for the three simulation runs are then averaged and inte-
grated, and the acoustic components are obtained by fitting
the integral. The results for the decomposition of MOF-5
are listed in Table 4 for all the temperatures considered,
and are plotted in Fig. 6. By comparing with Table 3, we
see that the decomposition predicts a total thermal conduc-
tivity within 5% of the value obtained from the direct inte-
gration method. Note that kO contributes significantly to



Table 4
Thermal conductivity decomposition for MOF-5 and the temperature
dependence of the components

T (K) k

(W/m K)
kA,lg

(W/m K)
kA,sh

(W/m K)
kO

(W/m K)

200 0.298 0.051 0.141 0.106
250 0.306 0.042 0.151 0.113
300 0.305 0.029 0.160 0.116
350 0.314 0.025 0.161 0.128
400 0.318 0.021 0.142 0.155

niðki / T ni Þ 0.09 �1.30 0.06 0.54

Fig. 6. Variation of the thermal conductivity components of MOF-5 with
respect to temperature and the Cahill–Pohl relation [Eq. (11)]. The Cahill–
Pohl relation uses the temperature-independent sound speeds obtained in
Section 3.2.
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the thermal conductivity. This contribution is often ignored
in modelling efforts due to the flatness of the associated
phonon dispersion branches [9,10,37]. Such an assumption
is justified for materials with a large thermal conductivity
[32]. For a crystal with a low thermal conductivity, such
as MOF-5, the optical phonon contribution cannot be ig-
nored. A similar result was found for silica structures [32].

The components of the thermal conductivity have differ-
ent temperature dependencies: kA,sh is almost temperature
independent (n = 0.06), and is close to kCP at all tempera-
tures (as was found for a series of silica structures [32]);
kO increases when the temperature increases (n = 0.54),
and kA,lg decreases noticeably with increasing temperature
(n = �1.30). Note that only kA,lg varies with temperature
approximately as T�1. For MOF-5, a crystal with a low
thermal conductivity, the relative contribution of the
long-range acoustic phonons is small and the temperature
dependence of the total thermal conductivity is thus weak.
Only for those crystals in which long-range correlations
dominate the heat transfer (e.g., diamond, NaCl) will the
total thermal conductivity vary as T�1.

To develop a theoretical description of the acoustic por-
tion of Eq. (14) (kA 	 kA,sh + kA,lg), we begin from the
kinetic theory for thermal conductivity and write the ther-
mal conductivity as summation of the contributions from
all phonon modes [38]

k ¼ 1

3
cvup;gkp ¼

X
j

1

3
cv;jup;g;jkp;j

¼
X
j;A

1

3
cv;jup;g;jkp;j þ

X
j;O

1

3
cv;jup;g;jkp;j ¼ kA þ kO; ð15Þ

where cv is the volumetric specific heat, kp is the phonon
mean free path, and cv,j, up,g,j, and kp,j are the mode spe-
cific heat capacity, group velocity, and mean free path,
respectively. Under the Debye approximation, the contri-
bution of the acoustic phonons modes, kA, can be written
as [10]

kA ¼ kBn
X3

i¼1

up;g;i
T

T D;i


 �3 Z T D;i=T

0

x4ex

ðex � 1Þ2
kp;iðxÞdx; ð16Þ

where the summation is over the three polarization
branches, x is �hx/kBT and TD,i is �hxD,i/kB (xD,i is the
Debye frequency for the ith branch). In general, the mean
free path is limited by boundary scattering, impurity scat-
tering, and interphonon scattering [10,37]. At high temper-
atures, interphonon scattering dominates. In the MD
simulations performed here, only interphonon scattering
is present. To be physically meaningful, the mean free path
of a phonon mode should be longer than one half of its
wavelength [35]. Starting from this idea, we construct a
two-segment mean free path model. When the phonon fre-
quency is below a critical frequency, xc, its mean free path
will vary according to the relaxation time model of Rouf-
osse for moderate and high temperatures (above TD)
[37,43]. When the phonon frequency is above the critical
frequency, its mean free path is set to one half of its wave-
length. Thus, we get

kp;iðxÞ ¼
up;g;i

Aið1þ Bix2Þx2T
; x < xc;i;

¼ pup;g;i

x
; xc;i 6 x 6 xD;i;

Ai ¼
3� 103NApac2

GkB

21=2hMiu3
p;g;i

; Bi ¼
4p
3


 �2=3
5a2

12p2u2
p;g;i

; ð17Þ

where a is the mean interatomic distance (a = n�1/3) and
NA is the Avogadro number. To ensure a continuous
kp,i(x), xc must satisfy

xc;iAið1þ Bix
2
c;iÞ ¼

1

pT
: ð18Þ

For Bi 
 p2A2
i T 2, we have

xc;i ’
1

AipT
: ð19Þ

For MOF-5 at a temperature of 300 K and using
up,A = 1184 m/s as calculated from Eqs. (6) and (7), B is
9.2 � 10�27 s2, and p2A2T2 is 2.1 � 10�25 s2, so that the
use of Eq. (19) is justified. At this temperature, xc is
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2.2 Trad/s, much less than the Debye frequency
(xD = 13.4 Trad/s), indicating that most acoustic phonons
have the minimum mean free path.

The critical frequency xc decreases with temperature
(for MOF-5, xc at temperatures of 200 K, 250 K, 300 K,
350 K, and 400 K is 3.3 Trad/s, 2.6 Trad/s, 2.2 Trad/s,
1.9 Trad/s, and 1.7 Trad/s). That is, as the temperature
increases, an increasing number of phonon modes reach
the limiting mean free path of one half of their wavelength.
Using Eq. (17), Eq. (16) can be rewritten as

kA ¼
X3

i¼1

kB

2p2up;g;iAiT

Z xc;i

0

4p
3


 �2=3
5x2a2

12p2u2
p;g;i
þ 1

" #�1

dx

þ p
6

� �1=3

n2=3
X3

i¼1

up;g;i
�h4

T 2
D;ik

3
BT 2

Z kBT D;i=�h

xc;i

x3e
�hx

kBT

ðe
�hx

kBT � 1Þ2
dx:

ð20Þ

Based on the construction of this model, and our knowl-
edge of the GK thermal conductivity decomposition, we
associate the first term in Eq. (20) with kA,lg and the second
term with kA,sh. In considering Eq. (20), even if the temper-
ature dependencies of the material properties and phonon
dispersion are ignored, kA,lg still departs from T�1 behavior

(Tn with n < � 1). This is because xc decreases with tem-
perature. At the same time, kA,sh increases slightly with
temperature and eventually saturates. The lower xc, the
larger the fraction of kA,sh in kA. Eq. (20) also predicts that
the temperature dependence of kA will become progres-
sively weaker as temperature increases.

In Fig. 7, the temperature dependencies of kA,lg and
kA,sh predicted by the two-stage model are shown along
Fig. 7. The variation of kA,lg and kA,sh with respect to temperature
predicted by the two-stage model and from the MD decomposition. The
longitudinal and transverse sound speeds are taken to be 1672 m/s and
1033 m/s (see Section 3.2), and cG is set as 1.01 to fit kA,lg at a temperature
of 300 K.
with the MD decomposition data. The kA,lg component is
fit to the decomposition data at 300 K by setting cG equal
to 1.0. As with the fit to the Slack model in Fig. 5, the pur-
pose of the fit is to compare the general trends, and not to
specify cG. The agreement between the trends in the model
and the MD data are good. Note that the thermal conduc-
tivity predicted by Eq. (20) goes to infinity as the tempera-
ture goes to zero, typical of a crystal in an MD simulation,
where there are no quantum effects. A simulation of MOF-
5 at a temperature of 50 K (lower than TD) gives a thermal
conductivity of 2.8 W/m K, consistent with this trend.
While this numerical value cannot be compared with the
experiments due to the exclusion of quantum effects (pho-
non excitation), it does indicate that MOF-5 behaves like
a crystal in the simulations (the thermal conductivity of
amorphous materials in MD decreases as the temperature
decreases, consistent with experimental data [33,44,32]).

By setting xc equal to xD, up,g,i to the mean phonon

speed up,g, and using xD = up,g(6p2n/Nc)
1/3, we have, from

Eq. (20),

k ¼ kA;lg ¼
4:48� 103hMiT 3

D

Tn1=3c2
GN 2=3

c

; ð21Þ

which is similar to the Slack relation (Eq. (10)), except for
the constant. The difference in the constants is due to the
single-mode relaxation time approximation and a different
Hamiltonian used by Roufosse for three-phonon interac-
tions [37]. If xc is equal to zero, only kA,sh contributes to
kA, and as expected, Eq. (20) reduces to Eq. (11). For
T/TD,i� 1, xc vanishes, and kA will reach the classical lim-
it of kCP, Eq. (12).

Since kA,sh and kO are small and their temperature
dependencies are not strong (their sum has been interpreted
as a thermal conductivity limit in crystals [32]), we may
obtain a crystal with a low thermal conductivity and a
weak temperature dependence by reducing xc. This can
be accomplished by reducing the sound speed and increas-
ing the mean interatomic distance.

4.3. Examination of vibrations

The thermal conductivity of a dielectric material is
related to the lattice vibrations (i.e., phonon transport).
To further investigate the low thermal conductivity of
MOF-5, we will calculate the partial density of states
(PDOS) of the distinct atomic positions in the unit cell.
The PDOS of the bth species, Dp,b, is determined by taking
the Fourier transform of the velocity auto-correlation func-
tion, and weighting the result with the species concentra-
tion cb [45]:

Dp;bðxÞ ¼ cb

Z s

0

CbðtÞ cosðxtÞdt; ð22Þ

where

CbðtÞ ¼
XNb

i

huibðtÞ � uibð0Þi=
XNb

i

huibð0Þ � uibð0Þi: ð23Þ
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The total phonon DOS is obtained by summing over the
partial DOS:

DpðxÞ ¼
X

b

Dp;bðxÞ: ð24Þ

The PDOS indicates the vibrational modes that specific
atoms are involved with in the overall crystal lattice
dynamics. In a classical system, such as an MD simulation,
and in real systems well above the Debye temperature, all
degrees of freedom have approximately the same expecta-
tion value for their energy. Thus, one can interpret the area
under the PDOS curves as an indication of how the system
energy is distributed among the atoms.

In Fig. 8a, two cages and one bridge of the MOF-5
structure are shown, and the arrows are used to illustrate
the transport of vibrations from the atom C1. In Figs. 8b
and 8c, the PDOS of the Oc, Zn, O, C1, C2, and C3 atoms
are plotted. The C1 and C2 atoms have the same PDOS.
Motivated by the decomposition of the thermal conductiv-
ity, we can examine the vibrations in both the low- and
high-frequency regimes.

In the acoustic phonon modes, which end around 14
Trad/s (2.3 THz), the center oxygen atom (Oc) essentially
doesn’t participate. If one thinks of the heat transfer as
energy moving from atom to atom, in the cage structure
it will need to take a circuitous route around the Oc atom.
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Fig. 8. (a) Section of the MOF-5 structure. (b) and (c) PDOS of Oc, Zn, O, C
atoms is different than the others in (c).
There is also more activity in the C3 (which are a part of
the phenylene ring) and O1 (which are a part of the cage)
atoms than the C1/C2 atoms. The C1/C2 atoms act as a
bottleneck. We interpret this result as a sign of energy
localization. The phenylene ring can pivot about the axis
defined by the C1–C2 bond, and yet these motions are dif-
ficult to pass onto the cage and vice versa. Energy moves
back and forth across the bridge, or inside the cage, as it
is reflected at the connection between them. In this way,
the development of long-range correlations is suppressed.
A similar trend is observed in the optical phonon spectrum
of the C3 atoms. There is also scant overlap between the
PDOS of the Zn and O atoms at the higher frequencies
(most likely brought about by their mass difference), iden-
tifying another point in the structure where transmitting
energy will be difficult. The overall picture is thus one of
cages and bridges between which energy flow is restricted.
This is a finding similar to that for zeolites [32], where
energy localization on specific Si–O–Si structures was
identified.
5. Summary

We have developed a set of optimized classical inter-
atomic potentials for MOFs and used them to predict the
thermal conductivity of MOF-5 between temperatures of
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200 K and 400 K using MD simulations and the GK
method. The thermal conductivity of MOF-5 is low
(0.31 W/m K at a temperature of 300 K) and shows a weak
temperature dependence, very different from the k / T�1

behavior exhibited by many crystals at high temperature,
but similar to the behavior of amorphous phases.

The thermal conductivity of MOF-5 can be decomposed
into three parts: the acoustic short-range, acoustic long-
range and optical contributions, as shown in Table 4 and
Fig. 6. The decomposition indicates that the short-range
acoustic phonons and the optical phonons dominate the
energy transport. The long-range acoustic phonons con-
tribute little to the total thermal conductivity, resulting in
an amorphous-like behavior at high temperatures. We
believe this to be a common characteristic for nanoporous
crystals with a low thermal conductivity.

We developed Eq. (20), which is based on a two-stage
mean free path, to explain the acoustic portion of the
decomposition. The short-range contribution (kA,sh) is
found to be related to phonons that have mean free paths
equal to one half of their wavelengths, and the long-range
contribution (kA,lg) to phonons with longer mean free
paths. A critical frequency (xc) has been defined, which
indicates the relative contributions of the short and long-
range acoustic phonons. When xc is small the short-range
component dominates the thermal transport, and the
acoustic contribution to the thermal conductivity reaches
the CP limit. When xc is large, the long-range phonons
dominate, and the total thermal conductivity varies
approximately as T�1.

To summarize, we can explain the low thermal conduc-
tivity of MOF-5 using the simple kinetic relation k =
cvup,gkp/3 (Eq. (15)). The open structure of MOF-5 results

in a low atomic number density and leads to a low cv, and
the long, flexible bridge and the heavy cage cluster result in
a low phonon group velocity. The cage-bridge structure
suppresses the development of long range correlations
and reduces the phonon mean free path. While the results
presented are specific to MOF-5, the general findings are
applicable to other MOFs. With MD as a tool, and the
MOF family of materials to work with, the design of
new, highly insulating materials appears to be a realistic
goal.
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